

django-email-foundation

Description

This is a Django package that helps you build email templates for your email engine sender (we recommend you use django-yubin [https://github.com/APSL/django-yubin]).
It uses the zurb foundation for emails [https://foundation.zurb.com/emails/docs/] templates and node packages such as inky or panini.

It provides you with some commands and functionality to integrate zurb foundation for emails in your django project.

	install_requires: A command to install the required node packages, such as inky, panini, gulp, etc in your project.

	create_basic_structure: It creates an essential tree structure in your project, that contains the basic layout and folders
such as pages, helpers and partials, used by panini [https://www.npmjs.com/package/panini].

	email_builder: Starts a gulp process that watches your source templates, builds them and finally copies them to your target email folder. It compiles the sources using panini [https://www.npmjs.com/package/panini] and inky [https://www.npmjs.com/package/inky] for the best compatibility with the major email’s client.

It also gives you a django view to preview the generated templates. For the preview, you can use a custom fixed context for each template, and this is very useful because it allows designers to edit the layouts.

Index

	Installation
	Configuration

	Required settings

	Optional settings

	Commands
	email_builder

	install_requires

	create_basic_structure

	Previewing build templates

	Custom context

	Contributing
	Running tests

Installation

You can find the package on PyPI [https://pypi.org/project/django-email-foundation/] and it can then be installed using pip:

pip install django-email-foundation

You can also download the .zip distribution file and unpack it or download the sources. Inside this zip, you can find a script
file named setup.py. Enter this command:

python setup.py install

…and the package will be installed automatically.

Configuration

This package has been tested on:

	Python: 3.5.9, 3.6.7

	Django: 1.9.x, 2.1.7

	npm: 5.8.0

	yarn: 1.13.0

	node: 8.11.4, 10.20.1

In your Django project’s settings, add the package to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'django_email_foundation',
)

It is also necessary to add the def urls in your project. Edit your main urls.py and add:

urlpatterns = [
 ...
 path('def/', include('django_email_foundation.urls')),
]

Below you can see a list of all available settings which can be added to your Django settings configuration. Notice that
these constants start with DEF (Django Email Foundation).

Required settings

These settings are required and necessary to use any of the def commands.

DEF_TEMPLATES_SOURCE_PATH

It refers to the relative path from your root project where your email sources templates are located. For example, if you have the
following folder’s tree:

my_project
├── readme.md
└── src
 ├── emails_app
 │ ├── models.py
 │ ├── templates
 │ │ └── emails_app
 │ ├── templates_sources
 │ │ ├── assets
 │ │ ├── helpers
 │ │ ├── layouts
 │ │ ├── pages
 │ │ └── partials
 │ └── views.py
 └── manage.py

Them the constant should be:

DEF_TEMPLATES_SOURCE_PATH = 'src/emails_app/templates_sources'

Note

Important! The paths must be relative from the root project

DEF_TEMPLATES_TARGET_PATH

It refers to the path where the compiled email templates are stored. For example, from the previous example:

DEF_TEMPLATES_TARGET_PATH = 'src/emails_app/templates/emails_app'

DEF_STATIC_TARGET_PATH

Necessary for set where store the static files (images) in to the target path. Example:

DEF_STATIC_TARGET_PATH = 'src/emails_app/static/emails_app'

Take a look on this example with the three required settings:

[image: _images/demo_settings.png]

Optional settings

The optional settings can be used when you want to override the default values.

DEF_NPM_OR_YARN

It allows you to set which node package’s system will be used for installing the dependencies. Default optoin is yarn but you can replace with npm.

DEF_NODE_MODULES_PATH

The path where the node packages will be installed. The node_modules folder, by default will be created at the project root folder. Do not include node_modules in this setting. For example:

DEF_NODE_MODULES_PATH = '/home/my-user/workspace/my-project'

DEF_IGNORE_FILES

A list (or tuple) of files that will not be built with panini when the email_builder command is running.
However they will be moved at the target folder path.

By default there are two files, subject.html and body.txt.

For example you could have the following scenario:

templates_sources
├── assets
├── helpers
├── layouts
├── pages
│ └── user_account_validation
│ ├── body.html
│ ├── body.txt
│ └── subject.html
└── partials

You may only want to compile the body.html file but not the other two. Although you want to move it to the destination folder.

DEF_RUNSERVER_HOST

By default http://localhost:8000. Change it if your project runs on another host or port.

Commands

Three important commands are included with this application.

email_builder

This command launches a gulp process and watches your source files so that they are re-compiled, using panini + inky.

How to execute it:

./manage.py email_builder

If you run this command before your project has been configured, you will see a message similar to this one:

→ ./manage.py email_builder
Oops! Something went wrong...
 - Some of the required modules are not installed in "node_modules". Please run "./manage.py install_requires"
 - It is necessary to define DEF_TEMPLATES_SOURCE_PATH in your settings
 - The templates directory must have a valid structure. It must contain the pages, layouts, partials and helpers folders. You can run ".manage.py create_basic_structure" to build this structure, and to add a basic layout.
 - It is necessary to define DEF_TEMPLATES_TARGET_PATH in your settings

This is due to the command performing some checks before it runs. For example, it verifies that you already have the required node
packages, that the required constants have been defined in your settings, etc.

If everything is OK, you’ll see something like:

[image: _images/email_builder.png]

install_requires

This command uses npm or yarn (depending on your configuration) to install the required node packages, such as gulp, panini or inky.
It also creates the gulpfile.js file in your root path to allow you to use the email_builder command.

How to execute it:

./manage.py install_requires

Note

This command will create the node_modules folder, and it will also add some files to your root path: gulpfile.js, yarn.lock, package.lock and package.json. Remember to add these entries to your .gitignore to avoid committing these files.

create_basic_structure

This command creates a basic tree structure in your templates source path. This structure will look like this:

templates_sources
├── assets
│ └── scss
│ ├── app.scss
│ ├── _settings.scss
│ └── template
│ └── _template.scss
├── helpers
├── layouts
│ └── default.html
├── pages
├── data
│ └── context.py
└── partials

Once you have built this structure, you can start creating your custom templates inside the pages folder. Take a look at the official documentation [https://foundation.zurb.com/emails/docs/]. We recommend that you use the inky [https://foundation.zurb.com/emails/docs/inky.html] template language as it will make your life much easier ;).

Previewing build templates

If everything is ok and the email_builder command is up and running, the following view will open:

[image: _images/preview.png]

Note

For the previous screenshot, we have the following source and target templates.

Sources:

foundation_templates
├── assets
│ └── scss
│ ├── app.scss
│ ├── _settings.scss
│ └── template
│ └── _template.scss
├── helpers
├── layouts
│ └── default.html
├── pages
│ └── account_verification
│ ├── body.html
│ ├── body.txt
│ └── subject.html
└── partials

Target:

templates
└── emails
 └── account_verification
 ├── body.html
 ├── body.txt
 └── subject.html

The preview view contains a list of all build templates. You can click on each one and to see the template rendered using your custom context.

Custom context

Another important functionality of this package, is to use a custom context to preview your templates.

The context file it’s stored inside the data folder, where are the source templates. It’s a python file, named
context.py which contain a dictionary, also named context.

Note

The python dictionary it’s more powerful that a json file, for example. It allows you to define date objects, reuse
another attributes, etc.

The dictionary must contain two leveled keys. The first level it’s for the folder name, and the child, for file name.

For example:

{
 "example_folder": {
 "body.html": {
 "name": "Demo Name"
 }
 }
}

Now, if in your template, placed in example_folder/body.html, contains:

Hello \{{ name }}!

Note

Notice that the brackets need to be escaped because we are using inky and it conflicts with jinja2.
We must translate our jinja2 tags to the built-in django template.

You will see the following result in the template preview view:

Hello Demo Name!

This is very useful for your designers to work on the template directly.

Contributing

django-email-foundation is an open source project and improvements and bug reports are very appreciated.

You can contribute in many ways:

	Filling a bug on github

	Creating a patch and sending the pull request

	Help on testing and documenting

When sending a pull request, please be sure that all tests and builds passes. On the next section you’ll find
information about how to write the test.

Please follow the PEP8 coventions and in case you write additional features don’t forget to write the tests for them.

Running tests

You tu install those python packages in your virtualenv:

pip install pytest pytest-flake8

And then run:

pytest

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/demo_settings.png
B def _test

o

& Project

68
69

v Bu foundation_sources _7,2
» massets

> badata 2
Euhelpers ;i

» Bnlayouts
B pages e
b partials i
v Bu static 78
b emails i
v tutemplates 20
b emails -
@_init_py =
@_init_py S
» B def_test i
= dbasqlite3 o
& manage.py i

» 1l External Libraries
Po Scratches and Consoles

settings.py « feurls.py «
o,

TIME_ZONE = 'UTC"

USE_I18N = True

USE_L1@N = True

USE_TZ = True

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/2.1/howto/static-files/

STATIC_URL = '/static/'

DEF_TEMPLATES_SOURCE_PATH = 'apps/emails/foundation_sources"
DEF_TEMPLATES_TARGET_PATH = 'apps/emails/templates/emails’
DEF_STATIC_TARGET_PATH = 'apps/emails/static/emails’

_static/email_builder.png
~ ./manage.py email_builder
Oh, yes! Punchi, punchi! Lets go!

1 Using gulpfile /gulpfile.js
Starting 'watch®
Starting 'build*
Finished 'build' after 124 ms
Starting 'preview

Finished 'preview’ after
Starting 'watch'...
Opening http://localhost:8000/def/ using the default 0S app

[
[
[
[
[
[
[
[
—

_images/demo_settings.png
B def _test

o

& Project

68
69

v Bu foundation_sources _7,2
» massets

> badata 2
Euhelpers ;i

» Bnlayouts
B pages e
b partials i
v Bu static 78
b emails i
v tutemplates 20
b emails -
@_init_py =
@_init_py S
» B def_test i
= dbasqlite3 o
& manage.py i

» 1l External Libraries
Po Scratches and Consoles

settings.py « feurls.py «
o,

TIME_ZONE = 'UTC"

USE_I18N = True

USE_L1@N = True

USE_TZ = True

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/2.1/howto/static-files/

STATIC_URL = '/static/'

DEF_TEMPLATES_SOURCE_PATH = 'apps/emails/foundation_sources"
DEF_TEMPLATES_TARGET_PATH = 'apps/emails/templates/emails’
DEF_STATIC_TARGET_PATH = 'apps/emails/static/emails’

_images/email_builder.png
~ ./manage.py email_builder
Oh, yes! Punchi, punchi! Lets go!

1 Using gulpfile /gulpfile.js
Starting 'watch®
Starting 'build*
Finished 'build' after 124 ms
Starting 'preview

Finished 'preview’ after
Starting 'watch'...
Opening http://localhost:8000/def/ using the default 0S app

[
[
[
[
[
[
[
[
—

_images/preview.png
jango administration

Home » Django Email Foundation Templates Prey

Django Email Foundation Templates Preview

We show you all available build templates place at def_demo/templates/def_demo. Remember that you can use a custom context for each template. Please read the documentation.

= Folder account_verification
= bodytxt
= subjecthtml
= bodyhtml

_static/file.png

nav.xhtml

 Table of Contents

 		
 django-email-foundation

 		
 Installation

 		
 Configuration

 		
 Required settings

 		
 Optional settings

 		
 Commands

 		
 email_builder

 		
 install_requires

 		
 create_basic_structure

 		
 Previewing build templates

 		
 Custom context

 		
 Contributing

 		
 Running tests

_static/preview.png
jango administration

Home » Django Email Foundation Templates Prey

Django Email Foundation Templates Preview

We show you all available build templates place at def_demo/templates/def_demo. Remember that you can use a custom context for each template. Please read the documentation.

= Folder account_verification
= bodytxt
= subjecthtml
= bodyhtml

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

